Two-dimensional C/BN core/shell structures
نویسندگان
چکیده
Single-layer core-shell structures consisting of graphene as the core and hexagonal boron nitride as the shell are studied using the first-principles plane-wave method within density functional theory. Electronic energy level structure is analyzed as a function of the size of both core and shell. It is found that the confinement of electrons in a two-dimensional graphene quantum dot is reduced by the presence of a boron nitride shell. The energy gap is determined by the graphene states. Comparison of round, hexagonal, rectangular, and triangular core-shell structures reveals that their electronic and magnetic states are strongly affected by their geometrical shapes. The energy level structure, energy gap, and magnetic states can be modified by external charging. The core part acts as a two-dimensional quantum dot for both electrons and holes. The of extra electron intake capacity of these quantum dots is shown to be limited by the Coulomb blockade in two dimensions.
منابع مشابه
Core–shell titanium dioxide /carbon nanofibers decorated nickel nanoparticles as supports for electrocatalytic oxidation of ethanol
Abstract Recently alcohol fuel cells has been increased consideration because of their environmental friendliness, high energy conversion efficiency and low emissions. Many effort have been made to improve the electro-oxidation performance of alcohols such as methanol, ethanol and propanol. In this work, a new method for ethanol oxidation based on core–shell titanium dioxide / carbon nanofib...
متن کاملA nickel nanocatalyst within a h-BN shell for enhanced hydrogen oxidation reactions† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc01615h Click here for additional data file.
The development of low-cost and high-performance electrocatalysts remains a challenge for the hydrogen oxidation reaction (HOR) in alkaline membrane fuel cells. Here, we have reported novel Ni@h-BN core– shell nanocatalysts consisting of nickel nanoparticles encapsulated in few-layer h-BN shells. The Ni@hBN catalysts exhibit an improved HOR performance compared with the bare Ni nanoparticles. I...
متن کاملFacile synthesis, microstructure and photophysical properties of core-shell nanostructured (SiCN)/BN nanocomposites
Increasing structural complexity at nanoscale can permit superior control over photophysical properties in the precursor-derived semiconductors. We demonstrate here the synthesis of silicon carbonitride (SiCN)/boron nitride (BN) nanocomposites via a polymer precursor route wherein the cobalt polyamine complexes used as the catalyst, exhibiting novel composite structures and photophysical proper...
متن کاملOn the Six Node Hexagon Elements for Continuum Topology Optimization of Plates Carrying in Plane Loading and Shell Structures Carrying out of Plane Loading
The need of polygonal elements to represent the domain is gaining interest among structural engineers. The objective is to perform static analysis and topology optimization of a given continuum domain using the rational fraction type shape functions of six node hexagonal elements. In this paper, the main focus is to perform the topology optimization of two-dimensional plate structures using Evo...
متن کاملMicromagnetic studies of three-dimensional pyramidal shell-structures
In this article we present a systematic, numerical analysis of the magnetic properties of pyramidal-shaped core-shell structures in a size range below 400 nm. These are three dimensional structures consisting of a ferromagnetic shell which is grown on top of a non-magnetic core. The standard micromagnetic model without the magnetocrystalline anisotropy term is used to describe the properties of...
متن کامل